implicit defferentation
remember that dy/dx y= dy/dx
so
take derivitive of both sides
[tex]2x+2y \space\ \frac{dy}{dx}=0[/tex]
solve for [tex]\frac{dy}{dx}[/tex]
minus 2x both sides
[tex]2y \space\ \frac{dy}{dx}=-2x[/tex]
divide both sides by 2y
[tex]\frac{dy}{dx}=\frac{-2x}{2y}[/tex]
[tex]\frac{dy}{dx}=\frac{-x}{y}[/tex]
when is the slope equal to [tex]\frac{5}{12}[/tex]
solve for [tex]\frac{dy}{dx}=\frac{5}{12}[/tex]
[tex]\frac{dy}{dx}=\frac{5}{12}[/tex]
[tex]\frac{5}{12}=\frac{-x}{y}[/tex]
[tex]5y=-12x[/tex]
[tex]y=\frac{-12}{5}x[/tex]
find where the circle and this line intersects
substitute [tex]\frac{-12}{5}x[/tex] for y
[tex]x^2+(\frac{-12}{5}x)^2=676[/tex]
[tex]x^2+\frac{144}{25}x^2=676[/tex]
[tex]\frac{25}{25}x^2+\frac{144}{25}x^2=676[/tex]
[tex]\frac{169}{25}x^2=676[/tex]
times both sides by [tex]\frac{25}{169}[/tex]
[tex]x^2=100[/tex]
sqrt both sides, take positive and negative roots
x=+/-10
sub back
[tex]y=\frac{-12}{5}x[/tex]
[tex]y=(\frac{-12}{5})(10) \space\ or \space\ (\frac{-12}{5})(-10) [/tex]
[tex]y=\frac{-120}{5} \space\ or \space\ \frac{120}{5} [/tex]
[tex]y=-24 \space\ or \space\ 24 [/tex]
the points are (10,-24) and (-10,24)