Answer:
[tex] 20 \textsf{ in} [/tex]
Step-by-step explanation:
To find the height of the pyramid, we can use the formula for the volume of a pyramid:
[tex] \Large\boxed{\boxed{ \textsf{Volume} = \dfrac{1}{3} \times \textsf{base area} \times \textsf{height}}} [/tex]
Given:
- Volume = 960 in³
- Base side length = 12 in
Since the base is a square, its area is side length squared.
[tex] \textsf{Base area} = (\textsf{side length})^2 \\\\= (12 \textsf{ in})^2 \\\\= 144 \textsf{ in}^2 [/tex]
Now, we can use the formula for the volume of a pyramid to find the height:
[tex] 960 = \dfrac{1}{3} \times 144 \times \textsf{height} [/tex]
First, let's solve for the height without the fraction:
[tex] \textsf{height} = \dfrac{960 \times 3}{144} [/tex]
[tex] \textsf{height} = \dfrac{2880}{144} [/tex]
[tex] \textsf{height} = 20 \textsf{ in} [/tex]
Therefore, the height of the pyramid is 20 in.