Respuesta :
[tex]x^4-10x^2\ \textless \ -9\\
x^4-10x^2+9\ \textless \ 0\\
x^4-x^2-9x^2+9\ \textless \ 0\\
x^2(x^2-1)-9(x^2-1)\ \textless \ 0\\
(x^2-9)(x^2-1)\ \textless \ 0\\
(x-3)(x+3)(x-1)(x+1)\ \textless \ 0\\
x\in(-3,-1)\cup(1,3)
[/tex]
![Ver imagen konrad509](https://us-static.z-dn.net/files/d98/f059b0d41680c8bfa77b1334d68d765e.png)
x^4-10x^2<-9
x^4-10x^2+9<0
x^4-x^2-9x^2+9<0
x^2(x^2-1)-9(x^2-1)<0
(x^2-9)(x^2-1)<0 now for this to be true, the expressions must have different signs, so that the product is negative...
x<±3 and x>±1
±1<x<±3
x=(-3, -1)U(1, 3)
x^4-10x^2+9<0
x^4-x^2-9x^2+9<0
x^2(x^2-1)-9(x^2-1)<0
(x^2-9)(x^2-1)<0 now for this to be true, the expressions must have different signs, so that the product is negative...
x<±3 and x>±1
±1<x<±3
x=(-3, -1)U(1, 3)