Respuesta :
Answer:
cos 30 = [tex]\frac{\sqrt{3} }{2}[/tex]
Step-by-step explanation:
We know that in a right triangle, the length of an opposite side of 30 degrees is half of the length of hypotenuse.
Let "d" is the hypotenuse of the right triangle.
The opposite side = d ÷ 2
Using the Pythagorean theorem, we can find the third side.
[tex]Thirdside^2 = d^2 - (\frac{d}{2}) ^{2}[/tex]
= [tex]d^2 - \frac{d^2}{4}[/tex]
= [tex](\frac{4d^2 - d^2}{4} )[/tex]
= [tex]\frac{3d^2}{4}[/tex]
Taking square root on both sides, we get
Third side = [tex]\frac{\sqrt{3} d}{2}[/tex]
d is the hypotenuse. So
[tex]\frac{\sqrt{3} }{2} = \frac{Thirdside}{Hypotenuse}[/tex]
Here third side is the Adjacent side.
So, cos 30 = [tex]\frac{\sqrt{3} }{2}[/tex]