Answer:
(a) 498.4 Hz
(b) 442 Hz
Solution:
As per the question:
Length of the wire, L = 1.80 m
Weight of the bar, W = 531 N
The position of the copper wire from the left to the right hand end, x = 0.40 m
Length of each wire, l = 0.600 m
Radius of the circular cross-section, R = 0.250 mm = [tex].250\times 10^{- 3}\ m[/tex]
Now,
Applying the equilibrium condition at the left end for torque:
[tex]T_{Al}.0 + T_{C}(L - x) = W\frac{L}{2}[/tex]
[tex]T_{C}(1.80 - 0.40) = 531\times \frac{1.80}{2}[/tex]
[tex]T_{C} = 341.357\ Nm[/tex]
The weight of the wire balances the tension in both the wires collectively:
[tex]W = T_{Al} + T_{C}[/tex]
[tex]531 = T_{Al} + 341.357[/tex]
[tex]T_{Al} = 189.643\ Nm[/tex]
Now,
The fundamental frequency is given by:
[tex]f = \frac{1}{2L}\sqrt{\frac{T}{\mu}}[/tex]
where
[tex]\mu = A\rho = \pi R^{2}\rho[/tex]
(a) For the fundamental frequency of Aluminium:
[tex]f = \frac{1}{2L}\sqrt{\frac{T_{Al}}{\mu}}[/tex]
[tex]f = \frac{1}{2L}\sqrt{\frac{T_{Al}}{\pi R^{2}\rho_{Al}}}[/tex]
where
[tex]\rho_{l} = 2.70\times 10^{3}\ kg/m^{3}[/tex]
[tex]f = \frac{1}{2\times 0.600}\sqrt{\frac{189.643}{\pi 0.250\times 10^{- 3}^{2}\times 2.70\times 10^{3}}} = 498.4\ Hz[/tex]
(b) For the fundamental frequency of Copper:
[tex]f = \frac{1}{2L}\sqrt{\frac{T_{C}}{\mu}}[/tex]
[tex]f = \frac{1}{2L}\sqrt{\frac{T_{C}}{\pi R^{2}\rho_{C}}}[/tex]
where
[tex]\rho_{C} = 8.90\times 10^{3}\ kg/m^{3}[/tex]
[tex]f = \frac{1}{2\times 0.600}\sqrt{\frac{341.357}{\pi 0.250\times 10^{- 3}^{2}\times 2.70\times 10^{3}}} = 442\ Hz[/tex]