Which expression is equivalent to ((4^((5)/(4)).4^((1)/(4)))/(4^((1)/(2))))^((1)/(2))?
![Which expression is equivalent to 45441441212 class=](https://us-static.z-dn.net/files/db1/3cebfa0b19413170ae84baa2279c3f49.png)
![Which expression is equivalent to 45441441212 class=](https://us-static.z-dn.net/files/d35/84836ab58063758801adcdd0e7483f36.png)
Answer: 2
Step-by-step explanation:
The given expression : [tex](\dfrac{4^{\frac{5}{4}}\cdot4^{\frac{1}{4}}}{4^{\frac{1}{2}}})^{\frac{1}{2}[/tex]
Using product rule of exponents :
[tex]a^m\cdot a^n= a^{m+n}[/tex]
we get
[tex](\dfrac{4^{\frac{5}{4}}\cdot4^{\frac{1}{4}}}{4^{\frac{1}{2}}})^{\frac{1}{2}}\\\\=(\dfrac{4^{\frac{5}{4}+\frac{1}{4}}}{4^{\frac{1}{2}}})^{\frac{1}{2}}\\\\=(\dfrac{4^{\frac{5+1}{4}}}{4^{\frac{1}{2}}})^{\frac{1}{2}}\\[/tex]
[tex]=(\dfrac{4^{\frac{3}{2}}}{4^{\frac{1}{2}}})^{\frac{1}{2}}[/tex]
Using division rule of exponents :
[tex]\dfrac{a^m}{a^n} =a^{m-n}[/tex]
[tex](\dfrac{4^{\frac{3}{2}}}{4^{\frac{1}{2}}})^{\frac{1}{2}}=(4^{\frac{3}{2}-\frac{1}{2}})^{\frac{1}{2}}\\\\=(4^{\frac{3-1}{2}})^{\frac{1}{2}}\\\\=(4^{\frac{2}{2}})^{\frac{1}{2}}\\\\=(4^1})^{\frac{1}{2}}=(2\times 2)^{\frac{1}{2}}= (2^2)^{\frac{1}{2}}=2[/tex]
Hence, the correct answer [tex](\dfrac{4^{\frac{5}{4}}\cdot4^{\frac{1}{4}}}{4^{\frac{1}{2}}})^{\frac{1}{2}= 2[/tex]