A Carnot refrigeration cycle absorbs heat at -12 °C and rejects it at 40 °C. a)-Calculate the coefficient of performance of this refrigeration cycle b)-If the cycle is absorbing 15 kW at the -12C temperature, how much power is required? c)-If a Carnot heat pump operates between the same temperatures as the above refrigeration cycle, determine the COP of heat pump? d)-What is the rate of heat rejection at the 40°C temperature if the heat pump absorbs 15 kw at the -12 C temperature?

Respuesta :

Answer:

a)COP=5.01

b)[tex]W_{in}=2.998[/tex] KW

c)COP=6.01

d)[tex]Q_R=17.99 KW[/tex]

Explanation:

Given

[tex]T_L[/tex]= -12°C,[tex]T_H[/tex]=40°C

For refrigeration

  We know that Carnot cycle is an ideal cycle that have all reversible process.

So COP of refrigeration is given as follows

[tex]COP=\dfrac{T_L}{T_H-T_L}[/tex]  ,T in Kelvin.

[tex] COP=\dfrac{261}{313-261}[/tex]

a)COP=5.01

Given that refrigeration effect= 15 KW

We know that  [tex]COP=\dfrac{RE}{W_{in}}[/tex]

RE is the refrigeration effect

So

5.01=[tex]\dfrac{15}{W_{in}}[/tex]

b)[tex]W_{in}=2.998[/tex] KW

For heat pump

So COP of heat pump is given as follows

[tex]COP=\dfrac{T_h}{T_H-T_L}[/tex]  ,T in Kelvin.

[tex] COP=\dfrac{313}{313-261}[/tex]

c)COP=6.01

In heat pump

Heat rejection at high temperature=heat absorb at  low temperature+work in put

[tex]Q_R=Q_A+W_{in}[/tex]

Given that [tex]Q_A=15[/tex]KW

We know that  [tex]COP=\dfrac{Q_R}{W_{in}}[/tex]

[tex]COP=\dfrac{Q_R}{Q_R-Q_A}[/tex]

[tex]6.01=\dfrac{Q_R}{Q_R-15}[/tex]

d)[tex]Q_R=17.99 KW[/tex]

ACCESS MORE