Respuesta :
Answer:
Probability is 0.0017
Step-by-step explanation:
To find : The theoretical probability of being dealt exactly three 4s in a 5-card hand from a standard 52-card deck
Solution :
[tex]^nC_r=\frac{n!}{r!(n-r)!}[/tex]
Selecting 5 cards from deck of 52 cards is
[tex]^{52}C_5=\frac{52!}{5!(52-5)!}[/tex]
[tex]^{52}C_5=\frac{52\times51\times50\times49\times48\times47!}{5\times4\times3\times2\times1(47)!}[/tex]
[tex]^{52}C_5=\frac{311875200}{120}=2598960[/tex]
Ways to get 3 4's is
[tex]^{4}C_3=\frac{4!}{3!(4-3)!}[/tex]
[tex]^{4}C_3=\frac{4\times3!}{3!\times1}[/tex]
[tex]^{4}C_3=4[/tex]
Ways to get rest 2 cards from 48 cards is
[tex]^{48}C_2=\frac{48!}{2!(48-2)!}[/tex]
[tex]^{48}C_2=\frac{48\times47\times46!}{2\times1\times46!}[/tex]
[tex]^{48}C_2=1128[/tex]
Probability of being dealt exactly three 4s in a 5-card hand from a standard 52-card deck is
[tex]P=\frac{^{4}C_3\times^{48}C_2}{^{52}C_5}[/tex]
[tex]P=\frac{4\times1128}{2598960}[/tex]
[tex]P=0.0017[/tex]
Therefore, The theoretical probability of being dealt exactly three 4s in a 5-card hand from a standard 52-card deck is 0.0017.