Respuesta :
[tex]x^2+y^2+22x+14y-55=0 \\\\x^2+22x+y^2+14y=55\\\\(x^2+22x+121)-121+(y^2+14y+49)-49=55\\\\(x+11)^2+(y+7)^2-121-49=55\\\\
(x+11)^2+(y+7)^2-170=55\\\\(x+11)^2+(y+7)^2=55+170\\\\\boxed{(x+11)^2+(y+7)^2=225}[/tex]
Answer B.
Answer B.
Answer: [tex](x+11)^2+(y+7)^2=225[/tex]
Step-by-step explanation:
Since, the standard form of the circle is,
(x-h)² + (y-k)² = r²
Where (h,k) is the center of the circle and r be the radius of the circle.
Here, the given general form of the circle is,
[tex]x^2+y^2+22x+14y-55=0[/tex]
[tex]x^2+22x+y^2+14y=55[/tex]
[tex]x^2+22x+11^2+y^2+14y+7^2=55+11^2+7^2[/tex]
[tex](x+11)^2+(y+7)^2=55+121+49[/tex]
[tex](x+11)^2+(y+7)^2=225[/tex]
Which is the required standard form of the circle.