I'm reading the vector field as
[tex]\mathbf F(x,y,z)=x\,\mathbf i-z\,\mathbf j+y\,\mathbf k[/tex]
The surface [tex]S[/tex] can be parameterized by
[tex]\mathbf s(\theta,\varphi)=4\cos\theta\sin\varphi\,\mathbf i+4\sin\theta\sin\varphi\,\mathbf j+4\cos\varphi\,\mathbf k[/tex]
with [tex]0\le\theta\le\dfrac\pi2[/tex] and [tex]0\le\varphi\le\dfrac\pi2[/tex].
Then the surface integral is given by
[tex]\displaystyle\iint_S(\mathbf F\cdot\mathbf n)\,\mathrm dS=\iint_S\left(\mathbf F(\mathbf s(\theta,\varphi))\cdot(\mathbf s_\theta\times\mathbf s_\varphi)\right)\,\mathrm dS[/tex]
[tex]\displaystyle-64\int_{\theta=0}^{\theta=\pi/2}\int_{\varphi=0}^{\varphi=\pi/2}(2\cos\varphi\sin^2\varphi\sin\theta+\cos^2\theta\sin^3\varphi))\,\mathrm d\varphi\,\mathrm d\theta=-\dfrac{32(\pi+4)}3[/tex]