Answer:
20^2 = 400, the 2nd power of 20
Step-by-step explanation:
Given that k=20^20 and 20^k/k^20 = 20^n, you want the largest power of 20 that divides n.
Taking the base-20 logarithm of both equations, we have ...
[tex]\log_{20}{k}=\log_{20}{20^{20}}\ \Longrightarrow\ \log_{20}{k}=20\\\\\log_{20}{\dfrac{20^k}{k^{20}}}=\log_{20}{20^n}\ \Longrightarrow\ k-20\log_{20}{k}=n[/tex]
Substituting for k and log(k), we get ...
[tex]20^{20} -20\cdot20=n\\\\20^2(20^{18}-1)=n[/tex]
This shows us the largest power of 20 that is a factor of n is 20².