Respuesta :
Answer: Hence the answer is 27 square feet.
Please look at the images for more details.
![Ver imagen Shree10](https://us-static.z-dn.net/files/d5b/7ac5aca26fc2fb1fecd5901a282b8d7e.jpg)
![Ver imagen Shree10](https://us-static.z-dn.net/files/d4c/ec746ef90f784c1b56e1300e3842e132.jpg)
Answer:
27 square feet
Step-by-step explanation:
Define the variables:
- Let w be the width of the old flag.
- Let l be the length of the old flag.
To increase a number by a certain percent, divide the percent by 100, add it to 1, then multiply the original number by this number.
If the length of the new flag is 20% greater than the length of the old flag:
[tex]\implies \textsf{Length}=\left(1+\dfrac{20}{100}\right) \timesl \times l=1.2l[/tex]
To decrease a number by a certain percent, divide the percent by 100, subtract it from 1, then multiply the original number by this number.
If the width of the new flag is 10% less than the width of the old flag:
[tex]\implies \textsf{Width}=\left(1-\dfrac{10}{100}\right) \times w =0.9w[/tex]
[tex]\boxed{\textsf{Area of a rectangle}=\sf width \times length}[/tex]
Therefore, given the area of the old flag is 25 ft²:
[tex]\implies wl=25[/tex]
To find the area of the new flag, substitute the expressions for width, length and wl into the formula for area of a rectangle:
[tex]\begin{aligned}\textsf{Area of new flag}&=\sf width \times length\\&=0.9w \times 1.2l\\&=0.9 \times 1.2 \times wl\\&=1.08 \times 25\\&=27\sf \;\; ft^2\end{aligned}[/tex]
Therefore, the area of the new flag is 27 square feet.