Respuesta :

The number of points that are expected to lie inside the circle is 785.

A circle is a closed two-dimensional figure. In a circle, all points are equidistant from the centre.

As per the given question, the circle is inscribed in a square,

  • The radius of the circle ( r )   =   1
  • The side length of the square ( s )   =   2

⇒ The area of the circle   =   π × r × r

                                           =   π × 1 × 1

∴ The area of the circle    =   π

⇒ The area of the square   =   s × s

                                             =   2 × 2

∴The area of the square    =    4  

The probability that a randomly selected point inside the square will lie inside the circle,

p   =   π / 4

The probability that a randomly selected point inside the square will lie outside the circle,

q   =  1 - p

q   =  1 - ( π / 4 )

⇒ Binomial trial with n   =   1000 and  p   =   π / 4,

Number of points expected to lie inside the circle(N)  =   n × p

                                                                                         =   1000 × ( π / 4 )

                                                                                         =   1000 × ( 3.14 / 4 )

                                                                                         =   1000 × ( 0.785 )

                                                                                  N    =   785  

Therefore, 785 expected points lie inside the circle.  

To know more about circles refer to:

https://brainly.com/question/24810873

#SPJ4

The complete question is

                                                                                       

Ver imagen qwlavender
ACCESS MORE