Respuesta :

the equation is a perfect square binomial (2n+7)^2.

Answer:

The given  quadratic equation [tex]4n^2+28n+49[/tex] factored as [tex](2n+7)^2=(2n+7)(2n+7)[/tex]

Step-by-step explanation:

   Given quadratic equation [tex]4n^2+28n+49[/tex]  

We have to factorize the given quadratic equation and make the grid of factors.

Consider the given quadratic equation [tex]4n^2+28n+49[/tex]  

Using algebraic identity,

[tex](a+b)^2=a^2+2ab+b^2[/tex]

On comparing, we get,

[tex]a^2=4n^2\\\\ \Rightarrow a=2n[/tex]

also, [tex]b^2=49\\\\\Rightarrow b=7[/tex]

Thus, the given  quadratic equation [tex]4n^2+28n+49[/tex] factored as [tex](2n+7)^2=(2n+7)(2n+7)[/tex]

The grid is shown in attachment below.

Ver imagen athleticregina
ACCESS MORE