Use the following data set to find the curve of best fit equation. (Remember to check if it should be exp or quad). Use the curve of best fit to predict the number of new stores in the year 2000.
![Use the following data set to find the curve of best fit equation Remember to check if it should be exp or quad Use the curve of best fit to predict the number class=](https://us-static.z-dn.net/files/d10/2c21212c409e40f3999d2e7f47be55be.png)
Explanation:
Mean of the number of new stores = (14 + 27 + 48 + 80 + 110 + 153 + 261 + 403 + 681)/9
Mean = 197.4444
Mx = 197.4444
Mean of the year = (1986 + 1987 + 1988 + 1989 + 1990 + 1991 + 1992 + 1993 + 1994)/9
Mean = 1990
My = 1990
Regression line:
[tex]\begin{gathered} \hat{y}\text{ = bX + }a \\ b\text{ =}\frac{\text{ sumo f products }}{su\text{ m of squares}}=\frac{4295}{388570.22} \\ b\text{ = }0.01105 \end{gathered}[/tex][tex]\begin{gathered} a\text{ = }M_y-bM_s \\ a\text{ = }1990-0.01105(197.4444)=1987.81824 \end{gathered}[/tex][tex]\hat{y}\text{ = }0.01105X+1987.81824[/tex]Plotting the line of best fit: