Equation of a circle in standard form:
[tex](x-h)^2+(y-k)^2=r^2[/tex](h,k) is the center of the circle
r is the radius
For the given circle:
Use the center and the given point to find the radius: the radius is the distance from the center to any point in the circumference.
Distance between two points:
[tex]d=\sqrt[]{(x_2-x_1)^2+(y_2-y_1)^2}[/tex][tex]\begin{gathered} (0,0) \\ (-5,4) \\ \\ r=\sqrt[]{(-5-0)^2+(4-0)^2} \\ r=\sqrt[]{(-5)^2+4^2} \\ r=\sqrt[]{25+16} \\ r=\sqrt[]{41} \end{gathered}[/tex]Use the center (0,0) (the origin) and the rafius to write the equation of the circle:
[tex]\begin{gathered} (x-0)^2+(y-0)^2=(\sqrt[]{41})^2 \\ \\ x^2+y^2=41 \end{gathered}[/tex]