Respuesta :

Given:

[tex]y=-2x-3[/tex][tex]y=2x^2+4x-1[/tex]

Requires:

We need to solve the given system of equations.

Explanation:

Consider equation.

[tex]y=2x^2+4x-1[/tex][tex]Substitute\text{ }y=-2x-3\text{ in the equation to find the value of x.}[/tex][tex]-2x-3=2x^2+4x-1[/tex]

Add 2x+3 to both sides of the equation.

[tex]-2x-3+2x+3=2x^2+4x-1+2x+3[/tex][tex]0=2x^2+6x+2[/tex][tex]2x^2+6x+2=0[/tex]

Divide both sides of the equation by 2.

[tex]\frac{2x^2}{2}+\frac{6x}{2}+\frac{2}{2}=\frac{0}{2}[/tex][tex]x^2+3x+1=0[/tex]

Which is of the form

[tex]ax^2+bx+c=0[/tex]

where a=1, b=3, and c =1.

Consider the quadratic formula.

[tex]x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}[/tex]

Substitute a=1, b=3, and c =1 in the equaiton.

[tex]x=\frac{-3\pm\sqrt{3^2-4(1)(1)}}{2(1)}[/tex][tex]x=\frac{-3\pm\sqrt{9-4}}{2}[/tex][tex]x=\frac{-3\pm\sqrt{5}}{2}[/tex][tex]x=\frac{-3\pm\sqrt{5}}{2}[/tex]

RELAXING NOICE
Relax