The work done to move one charge from infinity to a given distance is:
[tex]W=q(V_b-V_a)[/tex]since
[tex]V_b-V_a=kQ(\frac{1}{r_b}-\frac{1}{r_a})[/tex]and
[tex]r_a=\infty\rightarrow\frac{1}{r_a}=0[/tex]Then
[tex]W=\frac{kqQ}{r_b}[/tex]where:
[tex]\begin{gathered} k=9\cdot10^9Nm^2C^{-2}\rightarrow eletric\text{ constant} \\ q=-2\mu C=-2\cdot10^{-6}C \\ Q=10\mu C=10\cdot10^{-6}C \\ r_b=5.00m \end{gathered}[/tex]Plug all the data in the formula above:
[tex]\begin{gathered} W=\frac{(9\cdot10^9)\cdot(-2\cdot10^{-6})\cdot(10\cdot10^{-6})}{(5.00)} \\ W=-36\cdot10^{-3} \\ W=-3.6\cdot10^{-4}J \end{gathered}[/tex]So the final answer is:
[tex]W=-3.6\cdot10^{-4}J[/tex]