Respuesta :

The work done to move one charge from infinity to a given distance is:

[tex]W=q(V_b-V_a)[/tex]

since

[tex]V_b-V_a=kQ(\frac{1}{r_b}-\frac{1}{r_a})[/tex]

and

[tex]r_a=\infty\rightarrow\frac{1}{r_a}=0[/tex]

Then

[tex]W=\frac{kqQ}{r_b}[/tex]

where:

[tex]\begin{gathered} k=9\cdot10^9Nm^2C^{-2}\rightarrow eletric\text{ constant} \\ q=-2\mu C=-2\cdot10^{-6}C \\ Q=10\mu C=10\cdot10^{-6}C \\ r_b=5.00m \end{gathered}[/tex]

Plug all the data in the formula above:

[tex]\begin{gathered} W=\frac{(9\cdot10^9)\cdot(-2\cdot10^{-6})\cdot(10\cdot10^{-6})}{(5.00)} \\ W=-36\cdot10^{-3} \\ W=-3.6\cdot10^{-4}J \end{gathered}[/tex]

So the final answer is:

[tex]W=-3.6\cdot10^{-4}J[/tex]

RELAXING NOICE
Relax