ANSWER:
1737
STEP-BY-STEP EXPLANATION:
Given:
standard deviation (σ) = 2.1
Margin of error = E = 0.13
At 99% confidence level the z is:
[tex]\begin{gathered} \alpha=1-99\% \\ \\ \alpha=1-0.99=0.01 \\ \\ \alpha\text{/2}=\frac{0.01}{2}=0.005 \\ \\ \text{ The corresponding value of z is the following:} \\ \\ Z_{\alpha\text{/2}}=2.58 \end{gathered}[/tex]
We can calculate the sample size using the following formula:
[tex]\begin{gathered} n=\left(\frac{Z_{\alpha \text{/2}}\cdot \sigma }{E}\right)^2 \\ \\ \text{ We replacing:} \\ \\ n=\:\left(\frac{2.58\cdot2.1}{0.13}\right)^2 \\ \\ n=1736.97\approx1737 \end{gathered}[/tex]
The sample size is 1737