Drag the tiles to the correct boxes to complete the pairs. Not all tiles will be used.Match the equation of a parabola to its focus and directrix

For the given question, we will find the equation of the parabola of each box
then, we will select the correct equation from the tiles
The first box: focus (2, -2) and directrix y = -8
So, the parabola will open up and the equation will be:
[tex]\begin{gathered} h=2;k=\frac{-8+(-2)}{2}=-5 \\ (x-h)^2=4\cdot a(y-k) \\ a=3 \\ \\ (x-2)^2=12\cdot(y+5) \end{gathered}[/tex]simplify the equation
[tex]\begin{gathered} x^2-4x+4=12y+60 \\ y=\frac{x^2}{12}-\frac{x}{3}-\frac{14}{3} \end{gathered}[/tex]The second box: Focus (-3, 6) and Directrix (x = -11)
So, the parabola will open right
The values of (a) and the vertex (h,k) will be:
[tex]\begin{gathered} a=\frac{-3-(-11)}{2}=\frac{-3+11}{2}=\frac{8}{2}=4 \\ \\ h=\frac{-3+(-11)}{2}=-7;k=6 \end{gathered}[/tex]The equation of the parabola will be:
[tex]\begin{gathered} (y-k)^2=4a(x-h) \\ (y-6)^2=4\cdot4(x+7) \end{gathered}[/tex]Simplifying the equation:
[tex]\begin{gathered} y^2-12y+36=16x+112 \\ x=\frac{y^2}{16}-\frac{3y}{4}-\frac{19}{4} \end{gathered}[/tex]The third box: Focus (2, -2); Directrix (x = 8)
So, the parabola will open left
The values of (a) and the vertex (h,k) will be:
[tex]\begin{gathered} a=\frac{8-2}{2}=\frac{6}{2}=3 \\ h=\frac{8+2}{2}=5;k=-2 \end{gathered}[/tex]The equation of the parabola will be:
[tex]\begin{gathered} (y-k)^2=-4a(x-h) \\ (y+2)^2=-12(x-5) \\ \end{gathered}[/tex]Simplifying the equation:
[tex]\begin{gathered} y^2+4y+4=-12x+60 \\ x=-\frac{y^2}{12}-\frac{y}{3}+\frac{14}{3} \end{gathered}[/tex]The fourth box: Focus (-7, 1) and Directrix (y = 11)
The parabola will open down
The values of (a) and the vertex (h,k) will be:
[tex]\begin{gathered} a=\frac{11-1}{2}=\frac{10}{2}=5 \\ h=-7;k=\frac{11+1}{2}=\frac{12}{2}=6 \end{gathered}[/tex]The equation of the parabola will be:
[tex]\begin{gathered} (x-h)^2=-4a(y-k) \\ (x+7)^2=-20(y-6) \end{gathered}[/tex]Simplifying the equation:
[tex]\begin{gathered} x^2+14x+49=-20y+120 \\ \\ y=-\frac{x^2}{20}-\frac{7x}{10}+\frac{71}{20} \end{gathered}[/tex]The drag of the tiles to the boxes according to the following figure: