The approximate length of side XY is a: 3b: 3.16c: 4d: 4.24 units.

Solution
Given a triangle XYZ on the graph
The coordinates of points X, Y and Z are
[tex]\begin{gathered} X\Rightarrow(-3,-1) \\ Y\Rightarrow(-2,-4) \\ Z\Rightarrow(-6,-4) \end{gathered}[/tex]To find the approximate length of the sides, we apply the formula to find the distance, d, between two points which is
[tex]d=\sqrt{(x_2-x_2)^2+(y_2-y_1)^2}[/tex]To find the approximate length of side XY, substitute the coordinates of points X and Y into the formula to find the distance, d, between two points
[tex]\begin{gathered} XY=\sqrt{(-3-(-2))^2+(-4-(-1))^2} \\ XY=\sqrt{(-1)^2+(-3)^2} \\ XY=\sqrt{1+9}=\sqrt{10}=3.16\text{ units} \\ XY=3.16\text{ units} \end{gathered}[/tex]Hence, the approximate length of side XY is 3.16 units (option b)