Consider the given expression,
[tex]\sqrt[]{32}[/tex]Consider the formulae,
[tex]\begin{gathered} x^{m+n}=x^mx^n \\ \sqrt[]{xy}=\sqrt[]{x}\times\sqrt[]{y} \end{gathered}[/tex]Then the expression can be solved as,
[tex]\sqrt[]{32}=\sqrt[]{16\times2}=\sqrt[]{16}\times\sqrt[]{2}[/tex]Thus, the expression can be further simplified as,
[tex]\begin{gathered} \sqrt[]{32} \\ =\sqrt[]{16}\times\sqrt[]{2} \\ =\sqrt[]{4^2}\times\sqrt[]{2} \\ =4\times\sqrt[]{2} \\ =4\sqrt[]{2} \end{gathered}[/tex]