To solve this, we can use the formula for the sum of the first n terms of a geometric sequence. The fromula is:
[tex]S_n=a_1(\frac{1-r^n}{1-r})[/tex]In this case, a1 = 3 and r = 1/3
Then:
[tex]S_n=3(\frac{1-(\frac{1}{3})^n}{1-\frac{1}{3}})[/tex]And to find the sum of the first 5 terms, we evaluate for n = 5:
[tex]S_5=3(\frac{1-(\frac{1}{3})^5}{1-\frac{1}{3}})=3(\frac{1-\frac{1}{243}}{\frac{2}{3}})=3(\frac{\frac{242}{243}}{\frac{2}{3}})=3(\frac{3\cdot242}{2\cdot243})=3\cdot\frac{726}{486}=3\cdot\frac{121}{81}=\frac{121}{27}[/tex]Thus, the answer is:
[tex]S_5=\frac{121}{27}[/tex]