Respuesta :

Given that the boat travels upstream for 60 miles in 4 and downstream for 60 miles in 3 hours.

Let x be the rate of the boat in still water.

Let y be the rate of the boat in the current.

Downstream =x+y.

Upstream =x-y.

Using the speed formula for downstream, we get

[tex]3(x+y)=60[/tex]

Dividing both sides by 3, we get

[tex]\frac{3\mleft(x+y\mright)}{3}=\frac{60}{3}[/tex][tex]x+y=20[/tex][tex]x=20-y[/tex]

Using the speed formula for upstream, we get

[tex]4(x-y)=60[/tex]

Dividing both sides by 4, we get

[tex]\frac{4\mleft(x-y\mright)}{4}=\frac{60}{4}[/tex]

[tex]x-y=15[/tex]

Substitute x=20-y to compute y value, we get

[tex]20-y-y=15[/tex]

[tex]-2y=15-20[/tex]

[tex]-y=\frac{-5}{2}=-2.5[/tex][tex]y=2.5[/tex]

Substitute y=2.5 in x=20-y, we get

[tex]x=20-2.5=17.5[/tex]

Hence the rate of the boat in still water is 17.5 mph and the rate of the boat in the current is 2.5 mph.

RELAXING NOICE
Relax