Answer::
[tex]V(r)=60\pi rt[/tex]Explanation:
For a cone of radius r and height, h
[tex]\text{Volume}=\frac{1}{3}\pi r^2h[/tex]The cone has a fixed height of 15 inches.
The radius increases at a rate of 6 inches per minute.
We have that:
[tex]\begin{gathered} V=\frac{1}{3}\pi\times15r^2 \\ V=5\pi r^2 \end{gathered}[/tex]Taking the derivative with respect to time(t), we have:
[tex]\begin{gathered} \frac{dV}{dt}=5\pi2r\frac{dr}{dt} \\ Since\text{ }\frac{dr}{\mathrm{d}t}=6\text{ inches per minute} \\ \frac{dV}{dt}=5\pi2r\times6 \\ \frac{dV}{dt}=60\pi r \end{gathered}[/tex]We then rewrite in order to integrate.
[tex]\begin{gathered} dV=60\pi\text{rdt} \\ \int dV=\int 60\pi\text{rdt}=60\pi\int \text{rdt} \\ V=60\pi rt+C,C\text{ a constant of integration} \end{gathered}[/tex]Therefore, we have:
[tex]V(r)=60\pi rt[/tex]