Check all that apply. If cose = 15, then :

Given:
[tex]cos\theta=\frac{15}{17}[/tex]Required:
To check the given option.
Explanation:
Use the trigonometric ratio formula.
[tex]cos\theta=\frac{adjacent}{hypotenuse}=\frac{15}{17}[/tex]Thus adjacent = 15
hypotenuse = 17
Now by using the pythoguras theorem we will find the opposite side.
[tex]\begin{gathered} opp.=\sqrt{(hyp.)^2-(adj.)^2} \\ opp.=\sqrt{(17)^2-(15)^2} \\ opp.=\sqrt{289-225} \\ opp.=\sqrt{64} \\ opp.=8 \end{gathered}[/tex]Now we will check the given options.
First, we will check option (A).
[tex]\begin{gathered} sec\theta=\frac{hyp.}{adj.} \\ sec\theta=\frac{17}{15} \end{gathered}[/tex]option A is correct.
Now we will check option (B).
[tex]\begin{gathered} csc\theta=\frac{hyp.}{opp.} \\ csc\theta=\frac{17}{8} \end{gathered}[/tex]option (B) is incorrect.
Now we will check option (C).
[tex]\begin{gathered} tan\theta=\frac{opp.}{adj.} \\ tan\theta=\frac{8}{15} \end{gathered}[/tex]option (C) is correct.
Now we will check option (D).
[tex]\begin{gathered} sin\theta=\frac{opp.}{hyp.} \\ sin\theta=\frac{8}{17} \end{gathered}[/tex]option (D) is incorrect.
Final answer:
option (A) and (C) is the correct answer.