Respuesta :

In this case, we'll have to carry out several steps to find the solution.

Step 01:

Data:

an = ((-1)^n * 3) / (n^2)

Step 02:

sequence:

first term (a1):

n = 1

[tex]a1\text{ = }\frac{(-1)\placeholder{⬚}^1\text{ * 3}}{(1)\placeholder{⬚}^2}=\frac{(-1)3}{1}=\frac{-3}{1}=-3[/tex]

second term (a2):

n = 2

[tex]a2=\frac{(-1)\placeholder{⬚}^2*3}{(2^)\placeholder{⬚}^2}=\frac{(1)3}{4}=\frac{3}{4}[/tex]

third term (a3):

n = 3

[tex]a3=\frac{(-1)\placeholder{⬚}^3*3}{(3)\placeholder{⬚}^2}=\frac{(-1)3}{9}=\frac{-3}{9}=\frac{-1}{3}[/tex]

fourth term (a4):

n = 4

[tex]a4=\frac{(-1)\placeholder{⬚}^4*3}{(4)\placeholder{⬚}^2}=\frac{(1)3}{16}=\frac{3}{16}[/tex]

100th term (a100):

n = 100

[tex]a100=\frac{(-1)\placeholder{⬚}^{100}*3}{(100)\placeholder{⬚}^2}=\frac{(1)3}{10000}=\frac{3}{10000}[/tex]

That is the full solution.

RELAXING NOICE
Relax