solve 73 make sure to also define the limits in the parts a and b

73.
[tex]f(x)=\frac{3x^4+3x^3-36x^2}{x^4-25x^2+144}[/tex]a)
[tex]\lim_{x\to\infty}f(x)=\lim_{x\to\infty}(\frac{3+\frac{3}{x}-\frac{36}{x^2}}{1-\frac{25}{x^2}+\frac{144}{x^4}})=3[/tex][tex]\lim_{x\to-\infty}f(x)=\lim_{x\to-\infty}(\frac{3+\frac{3}{x}-\frac{36}{x^2}}{1-\frac{25}{x^2}+\frac{144}{x^4}})=3\cdot\frac{1}{2}=3[/tex]b)
Since we can't divide by zero, we need to find when:
[tex]x^4-2x^2+144=0[/tex]But before, we can factor the numerator and the denominator:
[tex]\begin{gathered} \frac{3x^2(x^2+x-12)}{x^4-25x^2+144}=\frac{3x^2((x+4)(x-3))}{(x-3)(x-3)(x+4)(x+4)} \\ so: \\ \frac{3x^2}{(x+3)(x-4)} \end{gathered}[/tex]Now, we can conclude that the vertical asymptotes are located at:
[tex]\begin{gathered} (x+3)(x-4)=0 \\ so: \\ x=-3 \\ x=4 \end{gathered}[/tex]so, for x = -3:
[tex]\lim_{x\to-3^-}f(x)=\lim_{x\to-3^-}-\frac{162}{x^4-25x^2+144}=-162(-\infty)=\infty[/tex][tex]\lim_{x\to-3^+}f(x)=\lim_{x\to-3^+}-\frac{162}{x^4-25x^2+144}=-162(\infty)=-\infty[/tex]For x = 4:
[tex]\lim_{x\to4^-}f(x)=\lim_{n\to4^-}\frac{384}{x^4-25x^2+144}=384(-\infty)=-\infty[/tex][tex]\lim_{x\to4^-}f(x)=\lim_{n\to4^-}\frac{384}{x^4-25x^2+144}=384(-\infty)=-\infty[/tex]