A planet orbits a star, in a year of length 4.34 x 10^7 s, in a nearly circular orbit of radius 1.42 x 10^11 m. With respect to the star, determine
(a) the angular speed of the planet,
(b) the tangential speed of the planet, and
(c) the magnitude of the planet's centripetal acceleration.

Respuesta :

Explanation:

It is given that,

Time taken by a planet to orbit a star, [tex]T=4.34\times 10^7\ s[/tex]

Radius of circular orbit, [tex]r=1.42\times 10^{11}\ m[/tex]

(a) Angular speed, [tex]\omega=\dfrac{2\pi}{T}[/tex]

[tex]\omega=\dfrac{2\pi}{4.34\times 10^7}[/tex]

[tex]\omega=1.44\times 10^{-7}\ rad/s[/tex]

(b)  Tangential speed of the planet, [tex]v=r\times \omega[/tex]

[tex]v=1.42\times 10^{11}\ m\times 1.44\times 10^{-7}\ rad/s[/tex]

v = 20448 m/s

(c) Centripetal acceleration of the planet, [tex]a=\dfrac{v^2}{r\\}[/tex]

[tex]a=\dfrac{(20448)^2}{1.42\times 10^{11}}[/tex]

[tex]a=0.0029\ m/s^2[/tex]

Hence, this is the required solution.