Explanation:
It is given that,
Time taken by a planet to orbit a star, [tex]T=4.34\times 10^7\ s[/tex]
Radius of circular orbit, [tex]r=1.42\times 10^{11}\ m[/tex]
(a) Angular speed, [tex]\omega=\dfrac{2\pi}{T}[/tex]
[tex]\omega=\dfrac{2\pi}{4.34\times 10^7}[/tex]
[tex]\omega=1.44\times 10^{-7}\ rad/s[/tex]
(b) Tangential speed of the planet, [tex]v=r\times \omega[/tex]
[tex]v=1.42\times 10^{11}\ m\times 1.44\times 10^{-7}\ rad/s[/tex]
v = 20448 m/s
(c) Centripetal acceleration of the planet, [tex]a=\dfrac{v^2}{r\\}[/tex]
[tex]a=\dfrac{(20448)^2}{1.42\times 10^{11}}[/tex]
[tex]a=0.0029\ m/s^2[/tex]
Hence, this is the required solution.