EXPLANATION
Let's see the facts:
Length = 12+ 2*Width =12+2w
Width=w
Area= 14cm^2
The area of the rectangle is given by the following relationship:
[tex]\text{Area}_{\text{rectangle}}=Length\cdot Width[/tex]Replacing terms:
[tex]14=(12+2\cdot\text{Width)}\cdot\text{Width}[/tex]To make it more simple, let's call w to the width and apply the distributive property:
[tex]14=12w+2w^2[/tex]Subtracting -14 to both sides:
[tex]0=2w^2+12w-14[/tex]Applying the quadratic roots formula:
[tex]w_1,w_2=\frac{-b\pm\sqrt[]{b^2-4\cdot a\cdot c}}{2\cdot a}[/tex]We have a=2, b=12 and c=-14
Replacing terms:
[tex]w_1,w_2=\frac{12\pm\sqrt[]{12^2-4\cdot2\cdot(-14)}}{2\cdot2}[/tex]Multiplying numbers:
[tex]w_1,w_2=\frac{12\pm\sqrt[]{144-112}}{4}[/tex]Subtracting numbers:
[tex]w_1,w_2=\frac{12\pm\sqrt[]{32}}{4}=\frac{12\pm4\sqrt[]{2}}{2}=6\pm2\sqrt[]{2}[/tex]The solutions to the quadratic equation are:
[tex]w_1=8.82,w_2=3.17[/tex]We have two possible solutions, w_1=8.82 cm and w_2=3.17 cm. Let's take w_2=3.17 cm as a solution:
The length would be as follows:
[tex]\text{length}=12+2\cdot3.17=18.34\operatorname{cm}[/tex]The answers are:
Width = 3.17 cm = 317/100 cm
Length = 18.34 cm = 917/50 cm