Let sin 0= 4/9. Find the exact value of cos 0.

Statement Problem: Let;
[tex]\sin \theta=\frac{4}{9}[/tex]Find the exact value of;
[tex]\cos \theta[/tex]Solution:
In trigonometry, the ratio of the sine is defined as;
[tex]\sin \theta=\frac{opposite}{hypotenuse}[/tex]Thus,
[tex]\text{opposite}=4,\text{ hypotenuse=9}[/tex]By Pythagoras theorem, the square of the longest side (hypotenuse) is the sum of squares of the opposite and the adjacent sides.
[tex]\begin{gathered} (\text{hypotenuse)}^2=(\text{opposite)}^2+(\text{adjacent)}^2 \\ (\text{adjacent)}^2=(\text{hypotenuse)}^2-(\text{opposite)}^2 \\ (\text{adjacent)}^2=9^2-4^2 \\ (\text{adjacent)}^2=81-16 \\ (\text{adjacent)}^2=65 \\ \text{adjacent}=\sqrt[]{65} \end{gathered}[/tex]The ratio of the cosine is defined as;
[tex]\begin{gathered} \cos \theta=\frac{adjacent}{hypotenuse} \\ \end{gathered}[/tex]Hence,
[tex]\cos \theta=\frac{\sqrt[]{65}}{9}[/tex]