Respuesta :
First of all, we need to make a draw of the problem to understand better:
Both vehicles have a point of interception when pass t=14.7 minutes
The distance between two cities are 81.4 km, then:
[tex]d=81.4\text{ km}[/tex]At time of interception t, Police car travels a distance:
[tex]\begin{gathered} v_{police\text{ car}}\cdot t \\ v_{police\text{ car}}\text{ - Sp}eed\text{ of police car } \\ t\text{ = time spent} \end{gathered}[/tex]Similary, Fire truck travels a distance of:
[tex]\begin{gathered} v_{\text{fire truck}}\cdot t \\ v_{\text{fire truck}}\text{ - Sp}eed\text{ of fire truck} \end{gathered}[/tex]But the fire truck is comming from the opposite direction.
When they meet at time t we have the next equation:
[tex]v_{police\text{ car}}\cdot t=d-v_{fire\text{ truck}}\cdot t[/tex]Now we convert time from minutes to hours:
[tex]\begin{gathered} 1\text{ hour = 60 minites} \\ x\text{ hour = 14.7 minutes} \\ x=\frac{14.7\cdot1}{60}=0.245\text{ hours; then} \\ t=14.7\text{ minutes = 0.245 hours} \end{gathered}[/tex]After that, we make a relation between two speeds, knowing that:
[tex]v_{police\text{ car}}=v_{fire\text{ truck}}+6.5\text{ }\frac{\operatorname{km}}{h}[/tex]Then:
[tex]\begin{gathered} v_{police\text{ car}}\cdot t=d-v_{fire\text{ truck}}\cdot t \\ (v_{fire\text{ truck}}+6.5\text{ }\frac{\operatorname{km}}{h})\text{.t}=d-v_{fire\text{ truck}}\cdot t;\text{ we solve to spe}ed\text{ of fire truck} \\ v_{fire\text{ truck}}\cdot t+6.5\frac{\operatorname{km}}{h}\cdot t=d-v_{fire\text{ truck}}\cdot t \\ v_{fire\text{ truck}}\cdot t+v_{fire\text{ truck}}\cdot t+6.5\frac{\operatorname{km}}{h}\cdot t=d;\text{ we replace t=0.245 h and d=81.4 km} \\ 2\cdot(0.245)\cdot v_{fire\text{ truck}}=\text{ 81.4 km -6.5}\frac{\operatorname{km}}{h}\cdot(0.245h) \\ 0.49\cdot v_{fire\text{ truck}}=81.4-1.5925 \\ v_{fire\text{ truck}}=\frac{79.8075}{0.49}=162.87\frac{\operatorname{km}}{h} \end{gathered}[/tex]Finally, we find the speed of car police
[tex]\begin{gathered} v_{police\text{ car}}=v_{fire\text{ truck}}+6.5\text{ }\frac{\operatorname{km}}{h} \\ v_{police\text{ car}}=162.87\frac{\operatorname{km}}{h}+6.5\text{ }\frac{\operatorname{km}}{h} \\ v_{police\text{ car}}=169.4\text{ }\frac{\operatorname{km}}{h} \end{gathered}[/tex]
