Respuesta :

Given

[tex]\sqrt{6+\sqrt{11}}-\sqrt{6-\sqrt{11}}\text{ \_\_\_\_\_\_\_ }3[/tex]

To compare.

Explanation:

It is given that,

[tex]\sqrt{6+\sqrt{11}}-\sqrt{6-\sqrt{11}}\text{ \_\_\_\_\_\_\_ }3[/tex]

Now, consider

[tex]\sqrt{p}=\sqrt{6+\sqrt{11}}-\sqrt{6-\sqrt{11}}[/tex]

Squaring both sides implies,

[tex]\begin{gathered} p=(\sqrt{6+\sqrt{11}}-\sqrt{6-\sqrt{11}})^2 \\ =(6+\sqrt{11})-2(\sqrt{6+\sqrt{11}})(\sqrt{6-\sqrt{11}})+(6-\sqrt{11}) \\ =12-2(\sqrt{(6+\sqrt{11})(6-\sqrt{11})}) \\ =12-2(\sqrt{36-11}) \\ =12-2(\sqrt{25}) \\ =12-2\times5 \\ =12-10 \\ =2 \end{gathered}[/tex]

That impies,

[tex]\sqrt{6+\sqrt{11}}-\sqrt{6-\sqrt{11}}=\sqrt{2}<3[/tex]

RELAXING NOICE
Relax