To find the half-life formula we will use the rule
[tex]t_{\frac{1}{2}}=\frac{1}{\log _{\frac{1}{2}}(1-r)}[/tex]Since the population of elephants decline by 5%, then
[tex]\begin{gathered} r=\frac{5}{100} \\ r=0.05 \end{gathered}[/tex]Then, substitute r in the rule above by 0.05
[tex]\begin{gathered} t_{\frac{1}{2}}=\frac{1}{\log _{\frac{1}{2}}(1-0.05)} \\ t_{\frac{1}{2}}=\frac{1}{\log _{\frac{1}{2}}(0.95)} \\ t_{\frac{1}{2}}=13.5134\text{ years} \end{gathered}[/tex]Now, to find the new value we will use the rule
[tex]N=N_0(\frac{1}{2})^{\frac{t}{t_{_0}}_{}}[/tex]N(0) is the initial value
[tex]N_0=8661[/tex]t is the time
[tex]t=59[/tex]Substitute these values in the rule above
[tex]N=8661(\frac{1}{2})^{\frac{59}{13.5134}}[/tex]Find the answer
[tex]N=420.0103933[/tex]Round it to the whole number, then
The number of elephants will be 420