Respuesta :

pH = 2.1

Let [tex] HA (aq)[/tex] resembles the acid; as a weak acid (a small value of [tex] K_{a} [/tex]) [tex] HA [/tex] would partially dissociate to produce protons [tex] H^{+} [/tex] and [tex] A^{-} [/tex], its conjugate base. Let the final proton concentration (i.e., [tex] [H^{+}] [/tex]) be [tex] x [/tex]. (Apparently [tex] x \ge 0 [/tex]) Construct the following RICE table:

[tex] \left\begin{array}{cccccc}\text{R}&HA(aq)&\rightleftharpoons&H^{+}(aq) &+ &A^{-}(aq)\\\text{I} & 0.14 \; \text{M} & &\\\text{C}&-x \; \text{M}& &+x \; \text{M} & & +x \; \text{M}\\E & (0.14 - x)\; \text{M} & & x \; \text{M} & &\+x \; \text{M}\end{array}\right [/tex]

By definition, (all concentrations are under equilibrium condition)

[tex] \left\begin{array}{ccc}K_{a}&=&[H^{+}] \cdot [A^{-}] / [HA]\\&=&x^{2} /(0.14 - x)\end{array}\right [/tex]

It is given that

[tex] K_a = 5.4 \cdot 10^{-6} [/tex]

Equating and simplifying the two expressions gives a quadratic equation; solve the equation for [tex] x [/tex] gives:

[tex] x^2 = 5.4 \cdot 10^{-6} \cdot (14 - x) \\x^2 + 5.4 \cdot 10^{-6} \cdot 14 \cdot x - 5.4 \cdot 10^{-6} \cdot 14 = 0 \\x = 0.0087 \; \text{M} \; (x \ge 0) [/tex]

The pH of a solutions equals the opposite of the logarithm of its proton concentration to base 10; thus for this particular solution

[tex] \text{pH} = -\text{ln(}[H^{+}]\text{)} / \text{ln(}10\text{)} = 2.1 [/tex]

ACCESS MORE