We know that the time is inversely proportional to the work.
Let tâ is the time taken by Jeff and tâ is the time taken by Jeff's dad.
We know that the formula:
[tex]\frac{1}{t_1}+\frac{1}{t_2}=\frac{1}{t}[/tex]Given:
[tex]\begin{gathered} t_1=4hours \\ t_2=? \\ t=3hours \end{gathered}[/tex]Therefore,
[tex]\begin{gathered} \frac{1}{4}+\frac{1}{t_2}=\frac{1}{3} \\ \frac{1}{t_2}=\frac{1}{3}-\frac{1}{4} \\ \frac{1}{t_2}=\frac{4-3}{12}=\frac{1}{12} \\ \frac{1}{t_2}=\frac{1}{12} \\ Cross\text{ multiply} \\ 1\times12=1\times t_2 \\ 12=t_2 \\ \therefore t_2=12 \end{gathered}[/tex]Hence, it took Jeff's dad 12hours to wash the car himself.