Answer:
B) x = -10
Explanation:
We were given that the equation is:
[tex]\begin{gathered} \frac{1}{x}+\frac{1}{x+18}=\frac{1}{40} \\ \text{Taking the L.C.M. of the left side, we have:} \\ \frac{(x+18)}{x(x+18)}+\frac{x}{x(x+18)}=\frac{1}{40} \\ \frac{(x+18)+x}{x(x+18)}=\frac{1}{40} \\ \frac{2x+18}{x(x+18)}=\frac{1}{40} \\ \text{Cross multiply, we have:} \\ x(x+18)=40\left(2x+18\right) \\ \text{Expanding the bracket, we have:} \\ x^2+18x=80x+720 \\ \text{Move the terms on the right side to the left side, we have:} \\ x^2+18x-80x-720=0 \\ x^2-62x-720=0 \\ \text{Factorising, we have:} \\ x^2-72x+10x-720=0 \\ \text{Factoring, we have:} \\ x(x-72)+10(x-72)=0 \\ (x-72)(x+10)=0 \\ x-72=0,x+10=0 \\ x=72,x=-10 \\ x=72(\text{the value of ''x'' cannot be negative because time cannot have a negative value}) \\ \\ \therefore x=-10\text{ is a solution of the equation that must be discarded} \end{gathered}[/tex]
x = -10 is a solution of the equation that must be discarded
Therefore, the correct option is B.