Given the functions:
[tex]\begin{gathered} G(n)=-0.08n^3+0.04n^2+1.2n+3.5 \\ T(n)=0.4n^3-1.7n^2+4n+16 \\ \end{gathered}[/tex]
The total sales (S) will be the sum of G and T
[tex]S(n)=(G+T)(n)[/tex]
Therefore,
[tex]S(n)=(-0.08n^3+0.04n^2+1.2n+3.5)+(0.4n^3-1.7n^2+4n+16)[/tex]
adding component to component, i.e. x^3 with x^3, x^2 with x^2 , x with x and number with number.
[tex]\begin{gathered} S(n)=(-0.08+0.4)n^3+(0.04-1.7)n^2+(1.2+4)n+(3.5+16) \\ S(n)=0.32n^3-1.66n^2+5.2n+19.5 \end{gathered}[/tex]
The answer is: B.