To answer this question we will use the two secants theorem, the two secants theorem states:
[tex]angle\text{ formed by two secants=}\frac{1}{2}(diffrence\text{ betw}een\text{ the arcs formed).}[/tex]
Therefore, we can establish the following relationship:
[tex]m\angle ACE=\frac{m\hat{AE}-m\hat{DB}}{2}\text{.}[/tex]
Substituting the given values for the arcs, we get:
[tex]m\angle ACE=\frac{110^{\circ}-45^{\circ}}{2}=32.5^{\circ}.[/tex]
To determine m[tex]m\angle BAD=\frac{1}{2}(45^{\circ}-0^{\circ})=22.5^{\circ}.[/tex]
Answer:
[tex]\begin{gathered} m\angle ACE=\frac{m\hat{AE}-m\hat{DB}}{2}, \\ m\angle ACE=32.5^{\circ}, \\ m\angle BAD=22.5^{\circ}. \end{gathered}[/tex]