In order to find the inverse of
[tex]A(x)=x^{\frac{1}{5}}+5[/tex]we first replace A(x) with y:
[tex]y=x^{\frac{1}{5}}+5[/tex]Then we replace every y with an x and every x with a y, like so:
[tex]x=y^{\frac{1}{5}}+5[/tex]We solve this new equation for y:
[tex]x-5=y^{\frac{1}{5}}\Rightarrow y^{\frac{1}{5}}=x-5[/tex]We raise both sides of the equation to the fifth power:
[tex](y^{\frac{1}{5}})^5=(x-5)^5[/tex][tex]y=(x-5)^5[/tex]Finally, we replace y with the inverse of the function:
[tex]A^{-1}(x)=(x-5)^5[/tex]and that is the inverse function.