Given:
height of the cylinder = 8ft
width of the cylinder - 5ft
density = 0.900 g/cm3
The volume V of a cylinder can be calculated using the formula:
[tex]\begin{gathered} V\text{ = }\pi r^2h \\ Where\text{ r is the radius } \\ and\text{ h is the height} \end{gathered}[/tex]The radius is half the width.
Substituting the given values:
[tex]\begin{gathered} V\text{ = }\pi\times(\frac{5}{2})^2\times8 \\ =\text{ 157.08 ft}^3 \end{gathered}[/tex]The mass m, volume v and density are related by the formula:
[tex]density\text{ = }\frac{mass}{volume\text{ }}[/tex]Substituting and solving for the mass:
[tex]\begin{gathered} 0.900\text{ }\frac{g}{cm^3}\text{ = }\frac{mass}{157.08\text{ ft}^3} \\ mass\text{ = 0.900 }\frac{g}{cm^3}\text{ }\times\text{ 157.08 }\frac{28316.8\text{ cm}^3}{ft^3} \\ =\text{ 4003202.65 g} \\ =\text{ 4003.2 kg} \end{gathered}[/tex]Answer Summary
[tex]\begin{gathered} Volume\text{ = 157.08 ft}^3 \\ mass\text{ = 4003.2 kg} \end{gathered}[/tex]