Respuesta :

We have the following system of equations,

[tex]\begin{gathered} -x+6y=11 \\ 2x-3y=5 \end{gathered}[/tex]

Using the elimination method.

Step #1. Multiply the 2nd equation by 2

[tex]\begin{gathered} -x+6y=11 \\ 4x-6y=10 \end{gathered}[/tex]

Step #2. Eliminate +6y and -6y

[tex]\begin{gathered} -x=11 \\ 4x=10 \end{gathered}[/tex]

Step#3. Add the values together

[tex]3x=21[/tex]

Step#4. divide both sides by 3

[tex]x=\frac{21}{3}=7[/tex]

So, we have x = 7

If x=7, then,

[tex]\begin{gathered} -7+6y=11 \\ 6y=11+7 \\ y=\frac{18}{6} \\ y=3 \end{gathered}[/tex]

Thus, y=3

Answer: (7,3)

RELAXING NOICE
Relax