Answer: 11.3 ft
Given that
The volume of the cone = 3, 200 ft^3
Height of the cone = 24 ft
[tex]\begin{gathered} \text{Volume of the cone = }\frac{1}{3}\cdot\pi\cdot r^2\cdot\text{ h} \\ \text{V = 3200 ft}^3 \\ \text{r = ?, h = 24} \\ 3200\text{ = }\frac{1}{3}\cdot\text{ 3.14 }\cdot r^2\cdot\text{ 24} \\ 3200\text{ = }\frac{3.14\cdot r^2\cdot\text{ 24}}{3} \\ \text{Cross multiply} \\ 3200\text{ x 3 = 3.14 }\cdot r^2\cdot\text{ 24} \\ 9600\text{ = }75.36\cdot r^2 \\ r^2\text{ = }\frac{9600}{75.36} \\ r^2\text{ = }127\text{ .3885} \\ \text{r = }\sqrt[]{127.3885} \\ \text{r = 11.286 ft} \\ \text{r = 11.3 ft} \end{gathered}[/tex]Therefore, the radius of the cone is 11.3 ft