Respuesta :

The cordinate of the point closest to point a will be the point that divides the line segment in the ration 1:3

Required cordinate is ((1(8) + 3(-1))/4, (1(4) + 3(1))/4) = ((8 - 3)/4, (4 + 3)/4) = (5/4, 7/4)

Answer:

[tex](\frac{5}{4}, \frac{7}{4})[/tex]

Step-by-step explanation:

Refer the attached diagram

We are given a segment AB which is divided into four equal parts by three points

Now we are supposed to find the coordinates of the point closest to point A.

So, the point C divides the line in the Ratio = 1:3

Coordinates of A =[tex](x_1,y_1)= (-1,1)[/tex]

Coordinates of B =[tex](x_2,y_2)= (8,4)[/tex]

Let the coordinates of C be (x,y)

Now we will use section formula:

[tex]x = \frac{mx_2+nx_1}{m+n}[/tex]  and [tex]y = \frac{my_2+ny_1}{m+n}[/tex]

m: n = 1:3

Now ,Substitute the values

[tex]x = \frac{1(8)+3(-1)}{1+3}[/tex]

[tex]x = \frac{5}{4}[/tex]

[tex]y = \frac{1(4)+3(1)}{1+3}[/tex]

[tex]y = \frac{7}{4}[/tex]

Thus the coordinates of C is [tex](\frac{5}{4}, \frac{7}{4})[/tex]

Hence  the coordinates of the point closest to point A are  [tex](\frac{5}{4}, \frac{7}{4})[/tex]

Ver imagen wifilethbridge
ACCESS MORE