The probability you're asked to find is
[tex]\mathbb P(A\cup B)-\mathbb P(A\cap B)[/tex]
where [tex]A\cup B[/tex] is the event that either event occurs (A, B, or both), and [tex]A\cap B[/tex] is the event that both events occur.
Recall that
[tex]\mathbb P(A\cup B)=\mathbb P(A)+\mathbb P(B)-\mathbb P(A\cap B)[/tex]
which means
[tex]\mathbb P(A\cup B)-\mathbb P(A\cap B)=\mathbb P(A)+\mathbb P(B)-2\mathbb P(A\cap B)[/tex]
You're told that [tex]\mathbb P(A)=0.5[/tex], [tex]\mathbb P(B)=0.7[/tex], and (if I'm reading the diagram correctly) [tex]\mathbb P(A\cap B)=0.3[/tex].
So,
[tex]\mathbb P(A\cup B)-\mathbb P(A\cap B)=0.5+0.7-2\times0.3=0.6[/tex]
Another way of seeing this is that the event A consists of the regions "A not B" and "A and B". So the probability that "A not B" occurs is
[tex]\mathbb P(A\setminus B)=\mathbb P(A)-\mathbb P(A\cap B)=0.5-0.3=0.2[/tex]
Similarly, B consists of "B not A" and "A and B", so you have
[tex]\mathbb P(B\setminus A)=\mathbb P(B)-\mathbb P(A\cap B)=0.7-0.3=0.4[/tex]
So the probability that A or B, but not both, occur is
[tex]\mathbb P(A\setminus B)+\mathbb P(B\setminus A)=0.2+0.4=0.6[/tex]