Diagram 1 shows absolute function of f(x)= 3x-1a)State the domain for that functionb)State the value of a

The function given is,
[tex]f(x)=3x-1[/tex]a) Domain
This is the set of all points over which a function is defined.
Therefore, the domain of the function is
[tex]-2\leq x\leq1[/tex]b) Solving for the value of a
To solve for the value of a, the value of y = 0 at x = a
Therefore,
[tex]\begin{gathered} f(x)=3x-1 \\ \text{where,} \\ f(x)=y=0 \\ x=a \end{gathered}[/tex]Solving for a
[tex]\begin{gathered} 0=3(a)-1 \\ 0=3a-1 \\ \end{gathered}[/tex]Collect like terms
[tex]\begin{gathered} 3a=0+1 \\ 3a=1 \end{gathered}[/tex]Divide both sides by 3
[tex]\begin{gathered} \frac{3a}{3}=\frac{1}{3} \\ a=\frac{1}{3} \end{gathered}[/tex]Hence,
[tex]a=\frac{1}{3}[/tex]