Solution
A rectangular campground has length 4x + 7 and width 3x – 2.
[tex]\text{Area}=\text{length x breadth}[/tex][tex]\text{Area}=\text{leghth x width}[/tex][tex]\begin{gathered} \text{Area = length }\times width\text{ } \\ \text{Area}=(4x+7)(3x-2) \end{gathered}[/tex][tex]\begin{gathered} \text{Area = 4x+7)(3X-2)} \\ \text{Area}=4x(3x-2)+7(3x-2) \\ =12x^2-8x+21x-14 \\ =12x^2+13x-14 \end{gathered}[/tex]Therefore the area of the campground =
[tex]12x^2+13x-14[/tex]