Find the measures of the numbered angles in the kite shown below.

The given quadilateral is a kite.
The diagonal of the kite intersect perpendicularly.
The value of angle 2 can be determined as,
[tex]\begin{gathered} \angle2=90^{\circ}-27^{\circ} \\ =63^{\circ} \end{gathered}[/tex]The value of angle 3 can be determine as,
[tex]\angle3=\angle2=63^{\circ}[/tex]In triangle PQR,
[tex]\begin{gathered} \angle PQO=\angle RQO \\ =27^{\circ} \end{gathered}[/tex]In triangle PSR,
[tex]\angle1=\angle SRO[/tex]In triangle SPO,
[tex]\angle PSO=90^{\circ}-\angle1[/tex]Also in triangle PSR,
[tex]\angle PSO=\angle RSO=90^{\circ}-\angle1[/tex]The value of angle 1 can not be determined without any further data.