Respuesta :

The given quadilateral is a kite.

The diagonal of the kite intersect perpendicularly.

The value of angle 2 can be determined as,

[tex]\begin{gathered} \angle2=90^{\circ}-27^{\circ} \\ =63^{\circ} \end{gathered}[/tex]

The value of angle 3 can be determine as,

[tex]\angle3=\angle2=63^{\circ}[/tex]

In triangle PQR,

[tex]\begin{gathered} \angle PQO=\angle RQO \\ =27^{\circ} \end{gathered}[/tex]

In triangle PSR,

[tex]\angle1=\angle SRO[/tex]

In triangle SPO,

[tex]\angle PSO=90^{\circ}-\angle1[/tex]

Also in triangle PSR,

[tex]\angle PSO=\angle RSO=90^{\circ}-\angle1[/tex]

The value of angle 1 can not be determined without any further data.

Ver imagen HenriqueM62074
RELAXING NOICE
Relax