SOLUTION
To solve this, we will apply the simple interest formula
[tex]\begin{gathered} I=\frac{PRT}{100} \\ \text{where } \\ I=\text{the interest = }73.97 \\ P=\text{ the principal or money loaned = }$5000$\text{ dollars } \\ R=\text{ interest rate }=\text{ ?} \\ T=\text{ time in years = }\frac{2}{12} \\ \text{Note that 60 days is 2 months, so to change the month to year, we } \\ \text{divide by 12 } \end{gathered}[/tex]Make R the subject we have
[tex]\begin{gathered} I=\frac{PRT}{100} \\ \text{PRT = 100I} \\ \text{dividing by PT, we have } \\ \frac{PRT}{PT}=\frac{100I}{PT} \\ R=\frac{100I}{PT} \end{gathered}[/tex]Substituting the values we have
[tex]\begin{gathered} R=\frac{100I}{PT} \\ R=\frac{100\times73.97}{5000\times\frac{2}{12}} \\ R=\frac{7397}{833.333} \\ R=8.8764 \end{gathered}[/tex]Hence the rate is 8.9% to the nearest tenth