I need help with this practice problem solving Make sure to read the instructions in redThe subject level for this is complex numbers and vectors

To get the 4th roots, let's convert first the complex number to its polar form. Here are the steps:
1. Find the absolute value of r.
[tex]r=\sqrt{a^2+b^2}^[/tex]In the given complex number, a = 2√3 while b = -2.
[tex]\begin{gathered} r=\sqrt{(2\sqrt{3})^2+(-2)^2} \\ r=\sqrt{12+4} \\ r=\sqrt{16} \\ r=4 \end{gathered}[/tex]2. Solve for the measure of the angle theta.
Since a > 0, we can use the tangent function to solve for the angle (in radian).
[tex]\begin{gathered} \theta=tan^{-1}\frac{b}{a} \\ \theta=tan^{-1}\frac{-2}{2\sqrt{3}} \\ \theta=-\frac{\pi}{6} \end{gathered}[/tex]Now that we have r = 4 and θ = -π/6, let's now determine the roots using the formula below:
[tex]\alpha=\sqrt[4]{r}(cos(\frac{\theta}{4})+isin(\frac{\theta}{4}))[/tex]Plugin the value of r and θ in the formula above.
[tex]\begin{gathered} \alpha=\sqrt[4]{4}(cos(\frac{-\frac{\pi}{6}}{4})+isin(\frac{-\frac{\pi}{6}}{4})) \\ \alpha=\sqrt[4]{4}(cos(-\frac{\pi}{24})+isin(-\frac{\pi}{24}) \\ \alpha=\sqrt[4]{4}cis(-\frac{\pi}{24}) \end{gathered}[/tex]To determine the next root, simply add π/2 to the angle.
[tex]\begin{gathered} \alpha=\sqrt[4]{4}cis(-\frac{\pi}{24}+\frac{\pi}{2}) \\ \alpha=\sqrt[4]{4}cis(\frac{11\pi}{24}) \end{gathered}[/tex]Add another π/2.
[tex]\begin{gathered} \alpha=\sqrt[4]{4}cis(\frac{11\pi}{24}+\frac{\pi}{2}) \\ \alpha=\sqrt[4]{4}cis(\frac{23\pi}{24}) \end{gathered}[/tex]Last, add another π/2.
[tex]\begin{gathered} \alpha=\sqrt[4]{4}cis(\frac{23\pi}{24}+\frac{\pi}{2}) \\ \alpha=\sqrt[4]{4}cis(\frac{35\pi}{24}) \end{gathered}[/tex]The roots in order of increasing angle measure are:
[tex]\begin{gathered} 1:\sqrt[4]{4}cis(-\frac{\pi}{24}) \\ 2:\sqrt[4]{4}cis(\frac{11\pi}{24}) \\ 3:\sqrt[4]{4}cis(\frac{23\pi}{24}) \\ 4:\sqrt[4]{4}cis(\frac{35\pi}{24}) \end{gathered}[/tex]